
Journal of RealTime Image Processing manuscript No.
(will be inserted by the editor)

Lionel Lacassagne · Bertrand Zavidovique

Light Speed Labeling
Efficient Connected Component Labeling on RISC Architectures

Received: date / Revised: date

Abstract This article introduces two fast algorithms for Con-
nected Component Labeling of binary images, a peculiar
case of coloring. The first one, SelkowDT is pixel-based and
a Selkow’s algorithm combined with the Decision Tree opti-
mization technique. The second one called Light Speed La-
beling is segment-based line-relative labeling and was espe-
cially thought for commodity RISC architectures. An exten-
sive benchmark on both structured and unstructured images
substantiates that these two algorithms, the way they were
designed, run faster than Wu’s algorithm claimed to be the
world fastest in 2007. Also they both show greater data in-
dependency hence runtime predictability.

Keywords

Connected Component Labeling, run length labeling, line
relative labeling, Algorithm Architecture Adequation, Rosen-
feld, Selkow, Real-Time implementation, transitive closure
computation.

Introduction

Binary Connected Component Labeling (CCL) algorithms
are widely used in the Image Processing field (Fig. 1). They
belong to a wider class of problems in the Graph Theory area
and deal with graph coloring and transitive closure compu-
tation. CCL algorithms play a central part in machine vi-
sion, because they often constitute a mandatory step between
low-level image processing (filtering) and high-level image
processing (recognition, decision). As such, CCL algorithms

Lionel Lacassagne
Institut d’Electronique Fondamentale (IEF/AXIS)
Université Paris Sud
E-mail: lionel.lacassagne@u-psud.fr

Bertrand Zavidovique
Institut d’Electronique Fondamentale (IEF/AXIS)
Université Paris Sud
E-mail: bertrand.zavidovique@u-psud.fr

have a lot of applications and derivate algorithms like con-
vex hull computation, hysteresis filtering or geodesic recon-
struction.

In its most common version, CCL is completed by two
coupled finite state automaton running at the same location
p respectively on the initial image (data) and the result im-
age (labels). Both automatons transform a common set of
neighbor pixels, the predecessors along the image scan, into
the label of p depending on their value as a data and their
attributed label. Due to its limited horizon, such an automa-
ton artificially generates multiple labels for a given region
– e.g. in cases of a concavity (Fig. 3) – to be noticed at the
bottom of the concavity and resolved at the end of the image
scan. CCL can address pixel sets to 1 (objects or regions out
of convention) or, concurrently, both pixel sets to 1 (objects)
and zero (background out of convention).

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

1

1 1

1

1

11 1 1 1

1 1

1

1 1

1

11 1 1 1

1 1

1

11 1

1

1

1

1

11 1 1 1

1

1

predecessor
pixels

8 8

8

8

8

3

34

9

4

9

2

8

10

8

6

7 7

5

7

66 6 6 6

6 6

1

1 1

1

11 1 1 1

1 1

8 8

8

8

8

3

33

8

3

8

2

8

8

8

6

6 6

5

6

66 6 6 6

6 6

1

1 1

1

11 1 1 1

1 1

current pixel

predecessor
labels

current label

px

p2

p4 ex

e2

e4

image of pixels image of labels

Fig. 1 Example of 4-connected binary components labeling

Due to their importance in vision, a lot of CCL algo-
rithms have been developed in the past. Some typical ones
are described in the following sections. Designing a new
algorithm is then a challenging task both considering the
overwhelming literature and from the very performance of
best existing algorithms. It is comparable to developping a



2

new version of matrix multiplication. Goals could be a faster
algorithm on some given class of computer architecture or
minimizing the amount of memory used, it could be as well
to minimize the number of over-created labels or to show the
smallest theoretical complexity (not quite the same as to be
the fastest one). Yet another issue is to be most predictable.

Now, from the current state of the computing technology,
reaching decent performances in actuality requires for CCL
algorithms to take into account two specificities/capacities
of RISC architectures: the processor pipeline and its cache
memories. That amounts to minimize conditional statements
(like tests and comparisons) to reduce the number of pipeline
stalls and limit random sparse (typically vertical) memory
accesses, to lower cache misses.

The first section describes Historical algorithms written
by the pioneers, and some Modern algorithms that try to op-
timize the previous ones. For each of them, we focus on its
hardware advantages and drawbacks. This section also de-
scribes a forgotten algorithm: the Selkow’s algorithm that
is used to replace the commonly used Union-Find structure
and algorithm in managing equivalence creation. A fair part
of these tentative improvements can be framed into an even-
tual pixel-based CCL algorithm that is an hybrid of architec-
tural optimizations presented in the section.

Then we introduce our new algorithm called Light Speed
Labeling (LSL) specifically designed in view of RISC archi-
tectures. This algorithm uses a segment approach combined
with the Selkow’s algorithm, to minimize the number of cre-
ated labels. Its major improvement is the introduction of a
new line-relative labeling to simplify equivalence building
between segments.

Finally, some extensive benchmarks are run to compare
and evaluate a dozen of CCL algorithms. At first we priv-
iledge the sole execution point of view. There, we put a fair
stress on the statistical standard deviation of the algorithm
execution-time when processing random and quite unstruc-
tured images.

But an other important point to consider when designing
a CCL algorithm is its goal. As it is an intermediate level al-
gorithm, it processes the output data coming from low level
algorithms (filtering, binary segmentation, ...) and provides
abstract input data to other intermediate or high level (de-
cision) algorithms. Usually, such abstract data also called
features are the boundary of bounding rectangle (for tar-
get tracking) and the first order statistical moments (surface,
centroid, orientation, ...). So if a standalone CCL algorithm
can be considered at first step, the couple “CCL + feature
computation” is the procedure to be actually evaluated at
end. Whence benchmarking on real images – OCR, cadas-
tre and less regular natural images stored in Sidba, Waterloo
or Brodatz databases – and rather stressing the distance be-
tween actual and optimal execution.

1 Classical labeling algorithms

We present here two sets of algorithms: the historical ones
that were designed by pioneers in the field and the modern
ones that aim at optimizing the first set.

1.1 Definitions

4

2

X

31

4

2

X

Fig. 2 4 and 8-connected component labeling

Let us define some notations (Fig. 2):

– px, ex, the current pixel and its label
– p1, p2, p3, p4, the neighbor pixels
– e1, e2, e3, e4, the associated labels
– ne, the number of labels
– T , the equivalence table
– a, the ancestor (the primal equivalence label) of e:
a = T [e]

– na, the number of labels (ancestors) after packing T
– run: a set of pixels, on a line, with same label.

1.2 Historical algorithms

Algorithm 1: Find algorithm
Input: e a label, T an equivalence table
Result: a, the ancestor of e
a← e1
while T [a] 6= a do2

a← T [a]3

return a4

Algorithm 2: Union algorithm
Input: e1, e2 two labels, T an equivalence table
Result: a, the least common ancestor of the e’s
a1 ← find(e1, T )1
a2 ← find(e2, T )2
if a1 < a2 then3

a← a1, T [a2]← a4
else5

a← a2, T [a1]← a6

return a7



3

Algorithm 3: positive min value min+

Input: e1, e2, e3, e4 four labels with at least one non-zero label
Result: m, the smallest non zero value
m← +∞1
foreach ek ∈ {e1, e2, e3, e4} do2

if (ek 6= 0 and ek < m) then m← ek3

return m4

1.2.1 Rosenfeld

Algorithm 4: First scan of Rosenfeld’s algorithm
Input: e1, e2, e3, e4, four labels
foreach pixel px do1

if px 6= 0 then2
if (e1 = e2 = e3 = e4 = 0) then3

ne← ne + 14
ex ← ne5

else6
foreach ek ∈ {e1, e2, e3, e4} do7

ak ← Find(ek, T )8

ex ← min+(a1, a2, a3, a4)9
foreach ek ∈ {e1, e2, e3, e4} do10

if (ak 6= 0 and ak 6= ex) then11
Union(ex, ak, T )

else12
ex ← 013

The most popular algorithm is Rosenfeld’s one (22). He
had introduced an algorithm (Algo. 4) which only requires
two scans of the image. The first step creates a new label for
each newly encountered region (that is a set of connected
pixels). The bright idea was to store equivalences between
labels into a table T , then to update equivalences before to
solve them (transitive closure). First implementations were
based on an adjacency (aka incidence) matrix and the Floyd-
Warshall algorithm was used for transitive closure. Their
major drawback was the huge amount of memory required
to hold the adjacency matrix, its size being the square of the
number of labels. The next implementations were based on
the Union-Find Algorithms (Algo. 1 & 2) designed by Tar-
jan. See (8) for details, optimizations and references. Same
as transitive closure, Union-Find stems from the general Graph
Theory and is not dedicated to image processing. It is an al-
gorithm and a data structure for disjoint sets that allows to
compute the transitive closure with efficient complexity. In
simplifying the transitive closure (Algo. 5), the positive min-
imum value (Algo. 3) is propagated during the equivalence
building. The equivalence table T is then solved (transitive
closure) The algorithm 5 does not produce contiguous num-
bers as labels, but it can be modified to pack labels on the fly
(Algo. 6). Then the image of labels is updated (Algo. 7).

Algorithm 5: equivalences resolution
for e ∈ [1 : ne] do1

T [e]← T [T [e]]2

Algorithm 6: equivalence resolution & pack
for e ∈ [1 : ne] do1

if T [e] 6= e then2
T [e]← T [T [e]]3

else4
na← na + 15
T [e]← na6

Algorithm 7: Second scan of Rosenfeld’s algorithm
Input: E, image of labels
foreach label ex ∈ E do1

ex ← T [ex]2

1.2.2 Haralick

The next algorithm is from Haralick (10) and is the classi-
cal iterative or multi-pass algorithm. This “step back” was
driven by an architecture constraint: the memory required to
hold the equivalence table was exceeding computer capaci-
ties at the time (Haralick was experimenting on a VAX-11).
Accesses to the table were generating as many accesses to
the mass storage, making the two-pass algorithm slower than
the multi-pass one. Here is a perfect example where the the-
orical complexity was diverging from the computing time.

1.2.3 temporary-label problem: Lumia & Ronse answers

2 1

1 1 1

1

1

1

1

11 12

2

2

stair concavity

4 
co

nn
ec

te
d

8 
co

nn
ec

te
d

Fig. 3 4 and 8-connected basic patterns: stair and concavity

Only two basic patterns trigger label creation, whatever
the connexity. The first one is the concavity. From the neigh-
borhood that founds CCL, it is obvious that the label creation
can not be avoided. The second one is the stair. It is respon-
sible for the burst of unnecessary created labels in the Rosen-
feld’s algorithm. In figure 3, arrows indicate the label prop-



4

agation from label to label in light gray while the creation
of a new label is figured with dark gray. The two following
algorithms provide solutions to avoid these creations.

The Lumia’s algorithm (16) is a worthy solution to limit
the amount of created labels. For every line, a small equiv-
alence table monitors the label creation and stores equiva-
lences detected along this line. At the end of line, the equiv-
alences are solved for the small table and propagated to the
large equivalence table. Such a strategy saves labels, since
a new label is not created when a pixel is detected with-
out connexion in its neighborhood (according to Fig. 3). The
creation is postponed to an hypothetic adjacency that could
happen (or not) between the following pixel of the line and
the previous line.

An alternative solution to the large amount of labels is
proposed by Ronse (21). It consists in considering segments
instead of pixels. Segment labeling makes the number of cre-
ated labels optimal i.e. equal to the number of ancestors plus
the number of concavities:

ne = na+ nc (1)

Algorithm 8: segment algorithm: implicit version
foreach segment si

k ∈ Si, the set of segments on line i do1
find Si−1(si

k) the subset of adjacent segments of Si−1 on2
line i− 1;
foreach segment si−1

l ∈ Si−1(si
k) of label el do3

apply Union-Find algorithm to find ε the min of all el4

set the label of si
k equal to ε5

Remark: Note that the type of an algorithmic expression
(Algo. 8) maybe misleading. It should be understood that
the elegant contraction of the lines 3 to 5 covers actually
a sequence of conditional statements (Algo. 9) that make
all the complexity of the problem, almost the key-point of
the present paper and our motivation to design a novel al-
gorithm (LSL cf. section 2). In the present paper, for sake
of technical comparison, we introduce a distinction between
the algorithm and its actual implementation, possibly with
optimizations, so called procedure.

1.3 Modern algorithms

1.3.1 Modern pixel-based algorithms

All modern algorithms, except those of section 1.4, derive
from one of the historical ones. They try improvement by
replacing some components by a more efficient one. For in-
stance the Haralick’s algorithm can produce more efficient
ones in two ways: smaller theoretical complexity or shorter
execution time. The latter is definitely favored through the
choice Decision Tree vs. Path Compression.

Algorithm 9: segment algorithm: explicit version
foreach segment si

k ∈ Si, the set of segments on line i do1
find Si−1(si

k) the subset of adjacent segments of Si−1 on2
line i− 1;
if card(Si−1(si

k)) = 0 then3
ne← ne + 14
ex ← ne5

else6
ε← label of first segment of Si−1(si

k)7

remove first segment from Si−1(si
k)8

foreach segment si−1
l ∈ Si−1(si

k) of label el do9
Apply Union-Find to el and ε10

ex ← ε11

Path Compression (PC) as defined in (8) is a second step
added to the Union-Find algorithm to perform a transitive
closure in climbing up to a common ancestor.

It is probably one of the best examples to illustrate that
relying on theoretical complexity is hazardous. Indeed, it is
proven (8) that implementing PC with Union-Find makes
complexity to grow as slow as the reverse Ackermann func-
tion. The latter property is definitively important for graph
merging in the general case, but not for equivalence man-
agement in CCL according to benchmarks and observations
(section 4.3).

e4

e1

e3
e2

ex=e4

ex=e1

ex=e2

e4

e1
1

0 1

0 1

1

1

ex=e3

0

0 1

0 0

+1 ex=e3=e4

ex=e3=e1

= propagation

= = concavity

+1
new label

or stair

Fig. 4 8-connected Decision Tree: pixel topology that corresponds re-
spectively to a stair, a propagation, a concavity is indicated by a dia-
mond, a rectangle, an octagon

Decision Tree (DT) is a dedicated optimization to CCL.
DT uses the local topology at the current pixel (Fig. 4) to re-
duce the number of pixels to read for finding out the current
label. It has a deep impact on the speed of CCL as it tack-
les one of the processor-architecture problem: pipeline stalls
due to conditional instructions. In the classical 8-connected
Rosenfeld’s algorithm (Algo. 4), there are four tests to com-
pute the minimal positive value of four labels (Algo. 3) and
four other tests whether to call the Union algorithm. Note
that tests are actually mandatory to avoid merging a label
with a 0-value background label. With DT (Fig. 4), the aver-
age number of tests drops to only 2.25 (1 + 1/2 + 1/4 + 1/4 +
1/8 + 1/8). A single equal in a leaf means a call to the Find
algorithm while a double equal means an equivalence build-
ing with a call to the Union algorithm. The leaf new means



5

the creation of a new label. The DT has been used by Wu
(28) in a 8-connected version, by Lamathy and Demigny in
a 4-connected version implemented on a FPGA (15) and by
Stepahno and Bulgarelli targetting a General Purpose Pro-
cessor (26). Depending on the architecture, DT provides a
speedup from ×1.15 to ×1.50.

Algorithm 10: Montanvert’s version of the Rosen-
feld’s algorithm (Algo. 4)

Require: T [e] = e, ne = 0
foreach pixel p do1

if px 6= 0 then2
if (e1 = e2 = e3 = e4 = 0) then3

new label4
ne← ne + 15
ex ← ne6

else7
foreach ek ∈ {e1, e2, e3, e4} do8

ak ← T [ek]9

ex ← min+(a1, a2, a3, a4)10
update ak:11
foreach ak ∈ {a1, a2, a3, a4}, with ak 6= ex do12

while T [ak] 6= ex do13
m← T [ak]14
T [ak]← ex15
ak ← m16

else17
ex ← 018

The optimization by Montanvert (7) was to fuse the Find
and the Union steps together. Yet, this algorithm implements
Path Compression (Algo. 10, lines 12-14).

The optimization by Suzuki is also interesting (27) as
it was taylored for an efficient hardware (FPGA or ASIC)
implementation. It is an hybrid multi-pass algorithm with
forward and backward scans. The authors show that only
four passes are required over the tested image bases. A more
extensive bibliography can be found in (11) and (28).

1.3.2 Modern segment-based algorithms

After Ronse, many routines to speed up segment-based CCL
algorithms were tried too. Recent algorithms focus on algo-
rithm/architecture adequacy.

Yang (29) relies on the Line Scan Clustering technique.
His algorithm remains slow because of the amount of infor-
mation associated to each segment, but its major drawback is
its hyper sensitivity to data: the execution time can be mul-
tiplied by a factor as large as ×4.

He (11) bets on linked lists of segments implemented
as a 1-dimentional array. This smart implementation boosts
the execution time (by reducing the time spent into equiva-
lence building) and makes the procedure as fast as the world
fastest algorithm by Wu (28).

Most of the concerned algorithms rely on Run Length
Coding (RLC). For each segment, a 4- or 8-connected seg-
ment is searched in the previous line. This algorithm behaves
like a fusion sort. Managing equivalences can be done in the
Rosenfeld or Selkow style. Very short segments represent
the worst case for this RLC algorithm. The equivalences are
processed from left to right, and segment labeling is com-
pleted in parallel. So the algorithm is simpler.

1.3.3 Selkow’s algorithm: the forgotten algorithm

The Selkow’s algorithm (23), quite forgotten, comes from
Graph Theory as well to replace the Union-Find algorithm.
To our knowledge it never spread over the Image Processing
Community except in France where it was used systemati-
cally since the early eighties at the ETCA – a laboratory part
of the french DARPA – where this algorithm belongs to the
Culture (1) (30).

It secures a double access to the equivalence table T
(Algo. 11). In most images this is enough to accessing the
root label of the graph, that is here the ancestor of the equiv-
alence class. In such a case (98.14 % Fig. 16), no more loop
is required (Algo. 1, line 2) so there is no more pipeline stall
unlike for the Union-Find algorithm.

Algorithm 11: Selkow algorithm
Input: e1, e2, e3, e4, four labels
foreach pixel px do1

if px 6= 0 then2
if (e1 = e2 = e3 = e4 = 0) then3

ne← ne + 14
ex ← ne5

else6
foreach ek ∈ {e1, e2, e3, e4} do7

ak ← T [T [ek]]8

ex ← min+(a1, a2, a3, a4)9
update ak:10
foreach ak ∈ {a1, a2, a3, a4} do11

if (ak 6= 0 and ak 6= ex) then T [ak]← ex12

else13
ex ← 014

Unfortunately, in terms of graph breaking, the Selkow-
based algorithm is not a panacea. It is easy to build counter-
examples of bristling-enough concavities such that the equiv-
alence will be lost or not (Fig. 5). However the histogram
(Fig. 16) of equivalence breaks vs. pixel density shows that
the double access Selkow’s algorithm overcomes 98 % of
the cases of our most stressing data, the percolation bench-
mark. Conversely, in a given application where the structure
of concavities is predictable – e.g. target tracking – the ac-
cess number of Selkow can be adapted. Such hardware in-
spired a consideration is similar to Suzuki’s (27).

As for Path Compression, its execution time relates di-
rectly to the depth of the equivalence tree. Results in table 4



6

indicate that whatever the type of data, it appears a signifi-
cant correlation between the number of labels (' number of
ancestors, concavities, stairs – see caption of Fig. 4) and the
latter depth.

1

?11
1
1

34
3

23
2
2

?
5 4
4
4

2

2
2
2

1
1
1

1
1
1

33
3
3

5 4
4
4

2

2
2
2

1
1
1

1 33
3
3

1
3

1
1
1

Fig. 5 Line 1: smallest known patterns requiring double access and
triple access for pixel-based Selkow’s algorithm (4-connected com-
ponent labeling). Line 2: left: counter-example (although similar this
pattern does not cause any graph break) right: generalization pattern
where the depth of the first concavity and the number of columns are
linked

1.4 Aesthetic but a priori inefficient algorithms

There are at least two species of aesthetic algorithms. The
first is based on stack manipulation and the second on the
Freeman’s code.

1.4.1 Mathematical Morphology

Mathematical morphology usually asks for stacks in the im-
plementation of morphological operators, including CCL.
The algorithm here looks like the painter algorithm where
calls to a recursive function are replaced by a user-defined
stack that holds coordinates of every pixel pushed into the
stack (25).

1.4.2 Contour Tracking

Contour Tracking (6) may be the most aesthetic optimization
as it is a one-pass algorithm where features like the binding
box can be computed without labeling any pixel strictly in-
side the area. Contour Tracking is enough to compute bind-
ing boxes or geometrical moments. It is like getting the re-
sult of a computation before to finish reading the input. Such
a kind of contour algorithm serves in 3D medical imaging
too (18).

But, in isolation, it is likely not to run fast as it does not
account for specificities of current architectures. Because of
the memory hierarchy inside commodity used RISC pro-
cessors, an algorithm performing vertical or quasi-random
accesses instead of horizontal and systematic accesses will

hamper the memory caches. The problem is the same as the
one already mentioned for Path Compression: PC can turn
out to be slower than the Selkow’s algorithm that always
performs with two memory accesses only.

1.4.3 Cycle equivalence management

1 2 3 1+2 1 2 3

1 2 3 (1+2)+3

1

3

2

Fig. 6 cycle equivalence management

We tried (13) an alternative strategy to the Union-Find
algorithm and data structure that is implementing the equiv-
alence relation as a directed cyclic graph (Fig. 6). But merg-
ing graphs together is unfortunately not so straight forward:
linking predecessor’s and successor’s labels of both graphs
is not enough when the two labels belong to the same graph.
In some cases, such a link splits the graph into two sub-
graphs. One has to check if labels are already equivalent
(that happens when there are holes in the components) by
scanning the whole graph. Both theoretical complexity and
execution time grow with the size of the equivalence classes.

1.5 Conclusion

On the one hand, there is the Union-Find with Path Com-
pression algorithm whose complexity grows as the inverse
of the Ackermann function and on the other hand, there is
the Selkow’s algorithm with constant complexity of 2.

The Selkow’s algorithm behavior is very close to the
Rosenfeld’s one. When optimized with DT, we will show
that Selkow+DT always run as fast as Rosenfeld+DT+PC
Wu’s algorithm. But on a commodity single RISC processor,
Selkow’s algorithm always runs faster (whatever the nature
of considered images). Moreover, it is less sensitive to data:
the execution time standard deviation is always smaller, in-
dicating a more runtime predictable algorithm. Such a prop-
erty is a key feature for algorithms used in embedded sys-
tems and, beyond, on parallel machines (load balancing). Let
us call SelkowDT the Selkow’s algorithm optimization with
DT added that we advocate for, in the pixel-based category.

Concerning segment-based algorithms, the label is at-
tributed to a segment after the equivalence process, not dur-
ing it. For that reason, the problem of a segment beginning
with a temporary label, in the pixel version, cannot exist in
the segment version. Then, it should quite always outper-
form pixel-based techniques. Let us call LSL (Light Speed
Labeling) the algorithm described in the next section that we
advocate for in the segment-based category.



7

2 Light Speed Labeling

Like other modern segment-based algorithm, LSL focuses
on architecture-algorithm adequacy. The problem of quickly
finding out the segment adjacency is reformulated by intro-
ducing a new line-relative labeling that helps limiting condi-
tional statements. That is all the more crucial as these state-
ments are responsible for pipeline stalls. The line-relative la-
beling is combined with a Selkow’s algorithm to make LSL
the most data independent as possible. Run length encod-
ing is extensively used at each step of the algorithm. Last
but not least, a peculiar attention was paid to segment-bound
data structures and their implementation to minimize cache
misses (section 3).

Let define the following notations:

– er, a relative label,
– ea, an absolute label,
– a, an ancestor label
– X , a binary image of size h × w, Xi the current line of
X , and Xi−1 the previous line.

– EA, an image of size h×w of absolute labels ea before
equivalence resolution

– L, an image of size h × w of absolute labels ea after
equivalences resolution

– ERi, an associative table of size w holding the relative
labels er associated to Xi

– ner, the number of segments of ERi – black + white –.
– RLCi, a table holding the run length coding of segments

of the line Xi, RLCi−1 is the similar memorization of
the previous line.

– ERAi, an associative table holding the association be-
tween er and ea: ea = ERAi[er]

– EQ, the table holding the equivalence classes, before
transitive closure

– A, the table of equivalence classes after their resolution
– RLC, a 2D table of size h× 2w holding all segments of

every line, used along LSL evolutions
– LEA, 2D list of absolute labels of every line, used in

LSL evolutions
– C, the dual of A

The ERAi table associates the relative and absolute la-
bels on a line. The table is filled up during the top-down
label propagation. The relative label is associated with the
minimum value of all absolute labels of the intersected seg-
ments in the previous line. Of course, the algorithm, is “feed-
forward”. So, the local minimum is propagated from first to
last equivalence. The local minimum equals the global one
in the end. Its propagation is actually secured in T , as fol-
lows: the local minimum is stored, and from closest to clos-
est, the latest absolute label ea has the global minimum a for
its ancestor.

The LSL algorithm is designed to fit RISC processor ar-
chitectures: memory caches and pipeline execution. LSL ac-
counts for the pipeline by minimizing the number of tests
and comparisons performed to detect segments and to find
the segments adjacency out. Classically a test makes pipeline

2 3 4 5 6 7 8 910j

Xi-1
Xi

Fig. 7 Lines Xi, Xi−1

to stall as the processor needs to know the result of the cur-
rently executed instruction before launching the next one.
The deeper the pipeline the bigger the impact on the perfor-
mance. LSL is not a 2-pass algorithm but a 3-pass one. It
introduces a pre-pass that performs a line relative labeling
devoted to speedup the next passes. Again, the main draw-
back of segment-based algorithms is they behave like a fu-
sion sort, but with a more complex automaton as segments
have length unlike points do . Let us underline that LSL can
directly find out the number of adjacent segments and their
labels, without performing complex adjacency tests. LSL is
composed of five steps:

– step#1: first labeling (relative segment labeling)
– step#2: equivalence building
– step#3: second labeling (first absolute labeling)
– step#4: equivalence resolution
– step#5: third labeling (final labeling)

Four versions of LSL were written called STD, RLC,
XRLC, RLE. The differences come from the sub-algorithms
used for the five steps (Tab. 1). The first step could be data
independent or conditional to pixel values. Steps 2, 3 and 5
can be either pixel-based or segment-based. And in the RLE
version, step#3 can be skipped. The specifications of the 4
versions are summarized in the following chart:

step / version STD RLC XRLC RLE
step#1 indep cond cond cond
step#2 pixel segment segment segment
step#3 pixel pixel segment ∅
step#5 pixel pixel segment segment

Table 1 LSL versions specifications

The 2 basic versions called STD and RLC were primar-
ily designed with a 4 and 8-connected neighborhood. Then
two optimizations of RLC called XRLC and RLE were de-
velopped and a final optimization called zero-offset (Z for
short) was added. The total number of versions is then six-
teen: {STD, RLC, XRL, RLE} × {4-C, 8-C} × {∅, Z}. The
differences are:

– the STD version is dedicated to DSPs where condition-
nal instructions can lengthen the execution time, so the
scan process, first absolute labeling, is unconditional. For
sake of building a reference version to compare to other
optimized version, the first labeling is also point by point.

– the RLC version uses the same memory allocations, but
with a segment labeling and a conditional scan:



8

– the XRLC version has a full table of RLC segments to
perform the final labeling by segment.

– the RLE version is based on the XRLC-version but does
not perform the second labeling. Instead of updating the
image of relative labels (step#2) ER, the absolute labels
ea are stored in a list LEA. After the equivalence reso-
lution, theses labels are used to create the image, like a
RLE decompression with RLC and LEA tables.
Let us underline that the distinction between RLC and

RLE made in this paper is specific to our problem of archi-
tecture fitting: RLE refers here more to the meaning in com-
pression. Actually, run length coding is used at every step in
RLE.

The figure 8 represents the synoptics of STD and RLC
versions of LSL.

The five steps are fully explicited in the next section and
illustrated through the labeling of figure 7. Given an image
X of size h×w, the figure focuses on 2 lines: Xi and Xi−1,
the current and previous lines.

X

Step #1

ERi RLCi

EQERAi

Step #3

Step #2

EA Step #4

A

Step #5

L

segment detection
(relative labeling)

equivalences
buiding

1st absolute
labeling

equivalences
resolution

2nd absolute
labeling

Fig. 8 LSL synoptics of STD & RLC versions

However, the next section is devoted to the sole STD and
RLC algorithms. For sake of clarity, the XRLC, RLE ver-
sions and Z optimizations will be described in the section
after dedicated to LSL optimizations.

2.1 Relative segment labeling: step#1

Step#1 performs a relative labeling of each line. For each
line Xi the ERi table holds the associated relative label er
of each segment. relative refers to that a same numbering
(restarting from zero) is performed for every line. As seg-
ments are separated by slices of background pixels, an effi-
cient numbering trick consists in assigning odd numbers to

Algorithm 12: LSL segment detection STD
Input: Xi a binary line of width w
Result: ERi, RLCi and ner
x1 ← 0 previous value of X1
f ← 0 front detection2
b← 0 right border compensation3
er ← 04
for j = 0 to w − 1 do5

x0 ← Xi[j]6
f ← x0 ⊕ x17
RLCi[er]← j − b8
b← b⊕ f9
er ← er + f10
ERi[j]← er11
x1 ← x012

x0 ← 013
f ← x0 ⊕ x114
RLCi[er]← w − b15
er ← er + f16
ner ← er17
return ner18

segments and even numbers to background (Fig. 9). While
labeling segments, their run length code (begin and end [j0, j1]
of each segment) is also stored into the RLCi table.

In algorithm 12, f represents the front detection of a
segment and is computed with a XOR (noted ⊕) while b
performs a correction of the end of segment. Indeed this
end of segment is detected one pixel after the real segment
end. Memory accesses are also optimized through the intro-
duction of two registers: x0 ← Xi[j] the current pixel and
x1 ← Xi[j − 1] the previous one. Such a register rotation
(line 12), saves one memory access on four, that is 25%.
Note that this algorithm is fully data independent. The re-
sult of its execution is given figure 9. The epilog after the
loop is to tackle the border problem and to process the last
point without reading a point beyond the end of the line.
One can notice that the cell RLCi[er] is written more than
once, if the current segment is longer than one pixel. This
can be avoided with the algorithm 13 called segment label-
ing RLC, as it prevents multiple accesses to the RLCi table.
Algorithm 13 is not data independent but it is hoped to be
faster.

2 3 4 5 6 7 8 910
ERi-1
ERi

j

0 852 4 8
2 9

RLCi-1
RLCi

2 3 4 510j

1 6544332
0 10 1 1 1 1 1 1 1
1 1

Fig. 9 tables ERi−1, ERi, RLCi−1 and RLCi

Such kind of a numbering (Alg. 12 line 10) is known
in the field of parallel computing as refering to the “scan”



9

Algorithm 13: LSL segment detection RLC
Input: Xi a binary line of width w
Result: ERi, RLCi and ner
x1 ← 0 previous value of X1
f ← 0 front detection2
b← 0 right border compensation3
er ← 04
for j = 0 to w − 1 do5

x0 ← Xi[j]6
f ← x0 ⊕ x17
if f 6= 0 then8

RLCi[er]← j − b9
b← b⊕ 110
er ← er + 111

ERi[j]← er12
x1 ← x013

x0 ← 014
f ← x0 ⊕ x115
RLCi[er]← w − b16
er ← er + f17
ner ← er18
return ner19

concept (4). Operations of that type are defined more funda-
mentally as follows:

– given an associative operator � and a vector v(x), 0 ≤
x ≤ nN ,

– the � − scan of v produces a vector w = � − scan(v)
such that: w(x) = v(0) � v(1) � ... � v(xN )

Then with operators + and ⊕, it comes:

ERi[j] = Σk=j
k=1Xi[k − 1]⊕Xi[k] (2)

ner is equal to the number of odd and even segments
by construction. So the odd segment er is the er/2-th odd
segment of the line and its boundaries [j0, j1] are stored into
RLCi[er − 1] and RLCi[er] respectively. In our example,
the boundaries of the segment er = 1 are RLCi[0] = 0 and
RLCi[1]− 1 = 10− 1 = 9.

2.2 Equivalence construction: step#2

Step #2 is the equivalence construction (Algo. 14).
For each segment er, its boundaries [j0, j1] are read from
RLCi (and are modified in the case of 8-connected labeling)
to direcltly obtain the relative labels of every adjacent seg-
ment in the previous line: er0 is the label of the first segment
and er1 the label of the last segment. As background slices
are labeled with even numbers, a correction, based on parity
check is applied to er0 and er1 (lines 11,12). The number of
adjacent segments is trivially (er1−er0)/2+1. If there is an
adjacency, the absolute label ea of the first segment is read
from the associative table ERAi−1 that holds the bijection
between relative and absolute labels. The ancestor a, that is
the smallest label of the equivalence class is initialized with
the label that is equivalent to ea.

The loop consists of extracting the absolute label eak and
the ancestor ak of each adjacent segment then propagating

Algorithm 14: LSL equivalence construction
Input: ERi−1, RLCi, EQ, ERAi−1, ERAi, ner
Result: nea the current number of absolute labels, update of

EQ and ERAi
for er = 1 to ner step 2 do1

j0 ← RLCi[er − 1]2
j1 ← RLCi[er]3
[check extension in case of 8-connect algorithm]4
if j0 > 0 then j0 ← j0 − 15
if j1 < n− 1 then j1 ← j1 + 16
er0 ← ERi−1[j0]7
er1 ← ERi−1[j1]8
[check label parity: segments are odd]9
if er0 is even then er0 ← er0 + 110
if er1 is even then er1 ← er1 − 111
if er1 ≥ er0 then12

ea ← ERAi−1[er0]13
a← EQ[ea]14
for erk = er0 + 2 to er1 do15

eak ← ERAi−1[erk]16
ak ← EQ[eak]17
[min extraction and propagation]18
if a < ak then19

EQ[eak]← a20
else21

a← ak22
EQ[ea]← a23
ea← eak24

ERAi[er]← a the global min25
else26

[new label]27
nea← nea + 128
ERAi[er]← nea29

the minimum ancestor to every label. At the end of the loop,
a is equal to the global minimum of all ancestors ak. That
value becomes the new absolute label of segment er and is
memorized into the ERAi table. In the case of no adjacent
label, a new label is created and the total number of absolute
labels nea is incremented.

Note that switching from the 8-connected version (Algo.
14) to the 4-connected one is straightforward: it is enough
to remove the diagonal lookups of lines 5 and 6. That makes
the only difference between the two versions !

1 3 52 4
0

ERi-1
ERi
EAi

EAi-1 1 2 3 alsolute

labels

relative

alsolute

relative1
1

1 1 1

0 0

0

tables

Fig. 10 Propagation of absolute labels through to relative labels

Let us stress upon that, in this segment case, the Selkow’s
algorithm is even simpler and deterministically so with only
one access to the equivalence table (Algo. 14, lines 15 and
18). For instance any pixel configuration as in figure 5 still
requires a single access. Thus, for a segment-based algo-



10

rithm Selkow’s has the smallest possible complexity. In par-
ticular, it is less complex than the Union-find algorithm which
complexity grows theoretically like the inverse Ackermann’s
function (Sec. 4.3) as there is no growth at all.

2.3 First absolute labeling: step#3

Algorithm 15: LSL segment first absolute labeling
for i = 0 to h− 1 do1

for j = 0 to w − 1 do2
EAi[j]← ERAi[ERi[j]]3

Step#3 consists in replacing the relative label of every
segment by its absolute label (Algo. 15). This step is straight-
forward: ERAi can be interpreted as a Look Up Table to be
applied to ERi to create EAi.

2.4 Equivalence resolution: step#4

Step #4 is the resolution of the equivalence classes. The
Selkow’s algorithm is preferred to Rosenfeld’s for building
equivalences as it is more stable (ie runtime predictable).
Yet, both resort to the same algorithm in computing the tran-
sitive closures (Algo. 6) .The EQ table is solved and packed
into the associative table of ancestors A.

2.5 Second absolute labeling: step#5

Algorithm 16: LSL second absolute labeling
for i = 0 to h− 1 do1

for j = 0 to w − 1 do2
EAi[j]← A[EAi[j]]3

Step #5 is identical to step#3: every absolute label ea is
replaced by its ancestor a (Algo. 16). This step is equivalent
to the second Rosenfeld’s scan (Algo. 7).

3 Algorithmic and Architectural optimizations of LSL

We present in this section, some algorithm transformations
and software optimizations that will lower the execution time.
We start with algorithmic transformations, as they have the
biggest impact on the performance.

3.1 Algorithmic optimization: XRLC & RLE

Like every segment-based CCL, the 8-connected version of
the LSL is very close to the 4-connected one: just two addi-
tions to add in reading the pixel (Algo. 14 lines 6-7).

As the relative segment labeling (Algo. 12 & Algo. 13),
the algorithms 15 and 16 can be modified to use an RLC
approach. Since every pixel of a segment er have the same
absolute label ea, that label can be read only once and ap-
plied to the entire segment. That modification implies that a
RLC table be created to hold the boundaries of every seg-
ment of every line. It implies a memory allocation of size
height × nermax, with nermax the maximum number of
segments per line. We have nermax < width/2 (happens
when a line is fully dashed). This extension of RLC to the
whole algorithm is called XRLC. This modification speeds
up the filling of EA.

The next evolution is to reduce the amount of memory
accesses again, by performing a compression based on run
length coding each segment. In that case the image EA is
no more written. The absolute labels ea of every segment
are stored in a list LEAi. There is one list per line. The im-
age EA can be reconstructed (for human visual check) by
first applying A to LEA and then uncompressing RLC with
associated values of LEA.

We can gain even further: as said in introduction, a label-
ing algorithm is an intermediate algorithm that is used after
a binary segmentation and before some feature computation.
Usually such a feature computation runs on the labeled im-
age, i.e. after the global end of a labeling algorithm: after the
transitive closure and after the second pass of re-labeling.
But if the features can be computed earlier, then these steps
are no more useful, except for humans to visually check the
labeling result. That is the goal of the RLE version. A new
table called LEA is filled up on the fly at step#2 (Fig. 11)
and holds the list of every absolute labels ea. Then, RLC
and LEA tables are enough to create the final image of la-
bels L without accessing the image of absolute labels EA.

Yet, to be efficient, the RLE version of LSL should ben-
efit from a smart memory implementation.

3.2 LSL and Memory management

Proper memory management needs to be secured. Indeed,
evolutions and adding optimizations means allocating more
and more oversized structures in memory. Since the final
number of labels is unknown at the beginning, the waste is
mandatory to avoid sparse addressing responsible for cache
misses and big penalties to CPU execution time. First, 2D
associative tables (RLC, LEA and C) are allocated with
Numerical Recipes in C matrix routines (19) for 16-bit
and 32-bit numbers. Being based on offset addressing, these
routines are easily customizable. A matrix is a 2D array
with a 1D array of pointers holding the start of each line
(Fig. 12, left part). Once a line of width n is filled with m
elements (m ≤ n), the pointer to the next line is modified to



11

X

Step #1

ERi RLC

ERAi

Step #3

Step #2

EA

Step #5

L

LEA

EQ

Step #4

C

A

segment detection
(relative labeling)

equivalences
buiding

1st absolute
labeling

equivalences
resolution

2nd absolute
labeling

Fig. 11 LSL synoptics of XRLC & RLE versions

point to the first free cell of the current line. To begin with,
start of line pointers are equidistant, that is pi−1 = pi + n
(using pointer arithmetic in C). From there it just remains to
set pi+1 to pi +m, and so on, for every line i. This ensures
storing contiguous data into memory and maximizing cache
hits.

unusedused

Fig. 12 LSL memory management for large tables

Other feature computations by other developpers (see
section 3.3) may appear necessary in the future. Aiming at
efficient add on, an associative table C is also constructed
at step 4. C is an associative table, dual of A: table A is
implementing a Union-Find structure, where A[ea] points to
a, the common ancestor of the equivalence class. Given an
ancestor a, C[a] holds the set of absolute labels ea that be-
long to that equivalence class. The table C is the union of all
Ca for every a. So finding the different labels ea composing
the class a, one needs only to read Ca, where labels ea are
already sorted. Such a kind of access enforces the memory
cache motto that is optimizing spatial and temporal local-
ities. Computing extra features is then faster than computing
the features of all classes together. It avoids sparse footprints
into memory and it avoids to modify the existing algorithms.

3.3 LSL and feature computation

There are mainly two kinds of features:

1. geometrical features, like bounding rectangles
[i0, i1]× [j0, j1],

2. radiometric features like statistical moments e.g. the zero-
order moment S represents the surface of the component
and the first-order moments SX and SY provide the cen-
troid (xG, yG) = (SX/S, SX/S),

These features can be computed at the end of the CCL
when the absolute label of each segment is known, or on
the fly if integrated to the algorithm 14. The parameter i0
is initialized at the creation of a new label. Likewise i1 is
initialized and then overwritten by the current i, as long as
ea exists. The values of j0 and j1 are also initialized at the
creation and updated with the min and max values for the
upcoming segment ea.

The statistic moments can also benefit from the RLC
coding. Let be s, sx and sy the zero-order and one-order
moments computed for a segment. S, SX and SY are the ac-
cumulation of them for every segment of absolute label ea.
For a segment, the following formula hold:

s = j1 − j0 + 1
sy = i× s

sx = ϕ1(j11)− ϕ1(j0 − 1), with ϕ1(n) =
n(n+ 1)

2

Higher order moments can be also computed fastly with Ber-
noulli polynomials ϕp(n):

ϕp(n) =
x=n∑
x=1

xp

These formulae are all the more interesting as the computa-
tion of statistical moments becomes independent of the seg-
ment width: here again the procedure is data independent.

As previously said, these computations can be completed
on the fly or after labeling thanks to RLC, LEA, and C ta-
bles. But in both cases the time consuming labeling steps of
LSL (step#3 and step#5) are no more required. The Bench-
mark (Tab. 6) will show that LSL with feature computation
but without steps #3 and #5 is running at quite the same
speed as LSL without feature computation but with these
steps: theRLE version makes feature computation a free
lunch.

3.4 Zero-Offset addressing

The last optimization to be done is zero-offset addressing.
It could seem unsignificant but benchmarks have shown a
speedup of 5%. Instead of storing j0 and j1 – the actual
boundaries of a segment – that also requires the register b
to correct j1, the value j1 + 1 will be stored into RLC. This



12

Algorithm 17: Selkow segment detection STDZ
Input: Xi a binary line of width w
Result: ner the number of relative labels on the line X
x1 ← 0 previous value of X1
f ← 0 front detection2
er ← 03
for j = 0 to w − 1 do4

x0 ← Xi[j]5
f ← x0 ⊕ x16
RLCi[er]← j7
er ← er + f8
ERi[j]← er9
x1 ← x010

if x1 6= 0 then RLCi[er]← w11
er ← er + x112
ner ← er13
return ner14

leads to an even smaller and faster algorithm for relative la-
beling (Algo. 17).

The other algorithms should be also slightly modified.
During the equivalences building (Algo. 14) the right bound-
ary stored is j1 + 1. Line 4 should be replaced by j1 ←
RLCi[er]−1. sx that was previously equal to sx = (j1(j1 +
1) − j0(j0 − 1))/2 should be replaced by sx = (j1(j1 −
1)−j0(j0−1))/2. The complexity of sx remains unchanged
while the line-relative labeling complexity drops (Algo. 17).
That is an optimization without counterpart.

3.5 Algorithmic complexity

In this section we tackle both the memory footprints and the
number of memory accesses, other key instructions as com-
parisons may be procedure dependent.

The Rosenfeld’s algorithm requires 2 images (1 for data,
1 for labels) of size h × w and 1 equivalence table of size
n to store the labels during the first pass and the ancestors
at end. The LSL algorithm, in its STD version, requires 5
extra tables to store ERi, ERi−1, RLCi, ERAi, ERAi−1.
As the maximum number of relative labels is bounded by
w/2 in the case of black and white pixel alternance, ER
and ERA tables hold both odd and even labels so their size
is bounded by w. RLCi table deals with even labels while
holding 2 parameters per label whence the w upper bound
again. For the RLE version, there are 2 additional 2D tables
with height h: RLC and LEA then bounded by h× w. The
table 2 sums up the algorithm memory requirements. Note
thatLSLSTD is very close to Rosenfeld’s in term of memory
occupation while LSLRLE is twice as complex. In the worst
case, the 4-connected chessboard, n reaches h/2 × w and
LSLRLE requires ×1.6 the Rosenfeld’s memory amount.
Eventually the three algorithms can be embedded the same
way as they have roughly the same memory footprints.

As for memory access, LSL completes 3 image scans
(step#1, #3, #5) including vizualisation. An important bench-
mark result turns out to be that the 3-pass LSLSTD is faster

algorithm memory footprint worst case
Rosenfeld 2hw + n 2.5hw
LSLSTD 2hw + n + 5w 2.5hw + 5w
LSLRLE 2hw + n + 4w + 3hw/2 4hw + 5w

Table 2 Procedure’s memory footprints

than the 2-pass RosenfeldDT . Obviously, memory accesses
do not have the same duration. Due to the cache size, step#1
and step#2 likely access data fitting in the cache and remain-
ing in it at step#3. At LSL’s step#5 and Rosenfeld’s second
labeling, data would not be in the cache anymore. Reloading
typically costs a dozen CPU cycles from the level 2 cache
and more than two hundred ones from the external mem-
ory. We think an accurate further analytical model is not
doable and choose to rely on a rationally-constructed and
large-enough benchmark for further analysis.

The data-dependent steps are Union-Find for Rosenfeld
and step#2 (equivalence building) for LSL. Behaving like a
merging sort, the LSL step#2 complexity is proportional to
the number of segments that is w/2 in the worst case. Com-
paratively, the complexity of the Union-Find in Rosenfeld’s
is proportional to the height of the equivalence tree again
bounded by the inverse Ackermann function.

Finally in terms of worst case, considering that a seg-
ment algorithm has twice the complexity of a pixel one since
it processes two data – the segment boundaries – instead
of one – the pixel, both would encounter the same worst
case as the maximum number of segments is half the line
width. While being not as universal, plausible benchmarks
provide more precise results, of course, to be further inter-
preted. That we endeavor to in the next section.

4 Benchmarks: Algorithms Evaluation and Results
Analysis

4.1 Benchmark data

CCL algorithms are data dependent and benchmarking such
algorithms is not obvious. We propose a four stages process
depending on the growing data intricacy. The first step is
to evaluate the algorithms in the maximum stress case, that
is intuitively here represented by totally unstructured data
– random images – especially hard on segment algorithms.
The second stage is then to test quasi-structured data. In our
case previous images are filtered with morphological op-
erators, to remove stand-alone pixels and to cluster others.
The third stage is to test highly structured data (homothety)
where the number of labels and ancestors are exactly the
same for all algorithms (pixel or segment CCL, 4 or 8 con-
nected CCL).

Let us underline that stages two and three allow to evalu-
ate figures of merit vs. parameters – e.g. number of dilations,
square size – that refer to the average size of regions and thus
to the expected number of intermediates labels.



13

Finally, real images are tested that involve many labels
to be representative enough. In that category, we include im-
ages commonly used for benchmarking CCL algorithms like
Sidba, Brodatz and Waterloo databases. In view of result in-
terpretation and benchmark plausibility-check, the table 4
displays the number of labels per image type (Sidba, Bro-
datz, Waterloo, percolation, 3× 3 dilation, OCR, and cadas-
tre).

Indeed, it is known that in applications requiring on the
fly computations the proof of ultimate validity would be the
worst-case optimality. In the absence of a suitable generic
image model to support the design of the most stressing data,
the present paper first relies on artificial sample images cho-
sen as explained above to be likely stressing on the CCL
procedures in a controlled manner. Then selected real im-
ages are tackled.

Even though real images would be considered with vari-
ous versions of them from adding noise in different manners
and binarizing optimally (20), such testing process would
not allow for data resizing. Conversely, the technique of gen-
erating images in random manners as proposed in this paper
allows image sizes as large as necessary. And from the point
of view of the intrinsic data complexity, it can be assessed
through table 4 that the latter images are a priori more dif-
ficult by a factor from ×5 to ×20 depending on the number
of concavities or stairs and then of labels.

Fig. 13 images of percolation with a threshold at 0.900: raw (left) and
after a 3× 3 dilation (right)

Bello,w the four image test-benches are precised:

– percolation (Fig. 13, left part): for image size n×n with
n ∈ {256, 512, 1024, 2048}, 1000 images are randomly
generated with a density varying from 0 to 1000 by steps
of 1/1000.

– mathematical morphology (Fig: 13, right part) to get slight-
ly structured images, a morphological operator is applied
to previous percolation images: erosion, dilation, open-
ing and closing with a structuring element of size 3 × 3
or 5× 5.

– structured data & homothety: images are paved with squa-
res of size k, k ∈ {4, 8, 16, 32, 64, 128}. For a given
square size k, a set of homothetical images are gener-
ated according to a scale factor λ (λ ∈ 1, 2, 3, 4, 5) so

keeping the number of labels constant. For instance, the
image size is 512 · 2λ × 512 · 2λ while the squares are
k · 2λ × k · 2λ (Fig. 14).

– real life & structured images: we picked images first in
Optical Character Recognition (OCR) and automatic cadas-
tre analysis for an intuitive, yet complex extension of
percolation and square images. Then we picked images
from usual databases in this field that were confirmed to
be simpler (Tab. 4).

Fig. 14 homothetical images famillies

The percolation images serve evaluating the behavior of
labeling algorithms with random images but also the impact
of the density on the number of generated labels vs. the ex-
ecution time. Morphological images are used to test images
that are a bit structured, but less than natural images. Homo-
theties are used to evaluate the impact of the relative ratio
object / image sizes. Such data enable to separate between
the number of components and the image size when execu-
tion time varies. OCR images are interesting as OCR is an
important application that requires realtime execution (Post
Offices for example). OCR images can contain a huge num-
ber of regions with small size. Cadastral images are harder
to label: some regions are even smaller and split into sub re-
gions (due to black and white hatching) and they are rounded
by very large regions (street, buildings). For OCR, the Uni-
versal Human Right Declaration was processed: the Decla-
ration was written with character case from 8 to 12 and con-
verted into images with resolutions from 72 dpi to 300 dpi.
Then, to push the algorithms, the resulting pages are pasted
together to get very large images. The size of the biggest im-
age is 2333× 12163 pixels. Images data sets are available at
(14).



14

4.2 Benchmark metrics

Table 3 describes the two families of processors used for
benchmark: the Motorola PowerPC 7447 (aka G4), the IBM
PowerPC 970MP (aka G5), the Intel Conroe and Intel Pen-
ryn. On multi-core processors, only one core was triggered.

arch Freq L2 cache size techno compiler
G4 (PPC477x) 1 GHz 256 KB 130nm gcc 4.0
G5 (PPC970) 2.3 GHz 1024 KB 90nm gcc 4.0

Conroe (T7700) 2.4 GHz 4096 KB 65nm icc 10.1
Penryn (Q9550) 2.8 GHz 6144 KB 45nm icc 10.1

Table 3 processors spec and compilers used

Comparing architectures from a quantitative point of view,
we choose to rely on the cpp (Cycle Per Point). It is an archi-
tectural metric to estimate the adequacy of an algorithm to
an architecture (12). On constant frequency processors, the
cpp is the normalized execution time: cpp = t × F/n2. t
is the execution time, F the processor frequency and n2 the
number of pixels to process. On variable frequency proces-
sors, cpp is computed from 64-bit hardware cycle counters
available on Intel and PowerPC. They are readable from op-
erating systems in use. As the execution time is normalized
by the processor frequency and the image size, results from a
given algorithm running on a given architecture can be com-
pared to other ones.

Three algorithms and six configurations are evaluated in
this paper. First, pixel-based algorithms are compared to-
gether, with and without optimization (Decision Tree, Path
Compression) to evaluate the impact of the systematic Selkow’s
double access versus the classical Union Find Ackermann-
optimal access. Second, the fastest optimal pixel algorithm
(28) is chalenged by LSL. Two versions of LSL are involved:
STD, the most systematic one and RLE, the more data de-
pendent one. For each benchmark, we provide the cpp but
also the standard deviation (sd) that is a fair indicator of the
global behavior of each algorithm: the smaller sd, the more
runtime predictable. For structured data, two cpp are pro-
vided – with and without feature computation – to assess the
algorithm behavior in a real application.

Let define the following procedures short name:

– RUF : Rosenfeld procedure based on classical Union-Find
Structure

– RPC : Rosenfeld procedure based on classical Union-Find
Structure with Path Compression

– RDT : Rosenfeld procedure using Path Compression and
Decision Tree (28)

– SDT : Selkow procedure with Decision Tree
– LSLSTD: LSL procedure with systematic computations

(STD) (LSTD for short in the table)
– LSLRLE : LSL procedure with RLE compression (LRLE

for short in the table),

All procedures were written strictly in the same man-
ner to enforce the same level of software optimization. For
instance, the implementation is based on pointer to func-
tion calls: the same loop (with i the line number) calls the
functions associated to the algorithms and their versions.
The only drawback of such coding fashion is that it pre-
vents from Inter-Procedural Optimization for compiler op-
tion. The granularity of the pointer to function is at line
level. Unlike, with pixel level granularity, its impact on per-
formance is then minor and all procedures are impacted the
same way. Not to forget that it makes an efficient way in C
towards extensible system of benchmark to handle many al-
gorithms ({ 8-bit, 16-bit, 32-bit }×{ 4-connected, 8-connected
}×{ algorithms and versions}). For tests to further guaranty
equitable benchmark, the website (14) gives access to binary
executables and all the images used. That enables other pro-
grammers to cross-check.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5
x 104

density

nu
m

be
r o

f l
ab

el

label

ancestor

concavity

stair

Fig. 15 complexity for random percolation

4.3 Benchmark results and analysis

The trend of the results is similar with the four proces-
sors (Tab. 6 and 5), so for conciseness the following ratios
and speedups refer only to the Penryn processor as being the
state-of-the-art off the shelf processor.

Considering the optimizations of Rosenfeld’s algorithm,
the Path Compression (PC) is not efficient whatever the pro-
cessor or the benchmark (columns RUD and RPC of table
5). This significative result makes a counter-example: the
procedure execution time can not be directly related to the
algorithm complexity. As said in section 1.3.1, PC is a gen-
eral Graph Theory optimization while DT accounts for the
local pixel topology. As a consequence, RDT is up to ×1.33
faster than RPC (columns RDT of table 5).



15

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80
histo

density

nb
 e

rro
r

 

 

Selkow errors

Fig. 16 distribution of Selkow’algorithm errors for 400.000 images.
Error rate is 1.86 %. Histogram is correlated with the number of con-
cavity - Fig. 15

data base label ancestor concavity stair depth
Average values

SIDBA 1400 624 354 422 7.0
Brodatz 424 174 130 119 4.6
Waterloo 2164 1170 594 400 15.4

random perco 8817 5578 2042 1181 116.4
dilation 711 222 156 332 4.8
OCR 34311 9428 5562 19321 32.4

cadastre 8377 3036 538 4803 17.9
Max values

SIDBA 4435 2083 1199 1450 43
Brodatz 1262 820 394 337 35
Waterloo 6481 3808 1973 1239 30

random perco 21530 19552 6487 2911 3533
dilation 5306 3545 1584 2212 238
OCR - - - - 54

cadastre - - - - 33

Table 4 databases spec and complexity: remind that nb of label = nb
of ancestors + nb concavity (in segment mode) and + stairs (in pixel
mode); their repartition vs. the depth matters.

Moreover, for all benchmarks (Tab. 5 and 6), SDT is al-
ways as fast or faster than RDT and has always a smaller
standard deviation. In other words, it is more runtime pre-
dictable. That enlightens the key part of the UF structure
management (even with PC and/or DT) in the computing
cost. Then the usual claim that the UF tree depth grows like
the inverse of Ackerman’s function and thus makes PC effi-
cient turns out to be inaccurate. So the Selkow’s algorithm
should be preferred to Rosenfeld and Union-Find algorithms
especially in applications where video frame rate is manda-
tory. As announced in sections 1.3.1 and 1.3.3, the Selkow’s
algorithm is faster but probabilistic: a supplementary run on
a 400.000 percolation image benchmark – the most stress-
ing type in terms of concavities – brings out a failure rate
of 1.86 %. The latter images are parameterized by the den-
sity of white pixels and the histogram (Fig. 16) indicates the

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

density

cp
p

Rosenfeld DT

LSL-RLE

Selkow DT

LSL-STD

Fig. 17 Penryn cpp for random percolation

arch RUF RPC RDT SDT LSTD LRLE

average cpp for random percolation
G4 69.6 72.1 48.5 49.2 46.8 42.0
G5 56.7 58.4 35.1 33.8 25.9 34.8

Conroe 43.4 45.0 32.4 31.6 23.6 30.8
Penryn 36.2 42.1 27.2 20.8 17.1 29.7
standard deviation in cpp for random percolation

G4 19.1 19.3 6.7 6.2 4.2 8.4
G5 22.0 23.3 8.9 8.1 4.7 10.8

Conroe 14.1 14.5 9.6 9.5 3.5 11.2
Penryn 14.3 18.0 8.8 6.1 2.9 10.5
average cpp for dilation 3× 3

G4 52.4 54.7 42.3 44.9 37.7 24.3
G5 36.8 35.6 25.9 25.9 16.8 15.4

Conroe 39.2 41.3 26.5 28.7 16.2 9.8
Penryn 20.9 20.3 22.1 13.9 11.1 9.1
standard deviation in cpp for dilation 3× 3

G4 9.2 9.1 2.4 2.5 1.5 3.5
G5 8.3 9.4 2.8 2.7 1.8 5.1

Conroe 5.5 5.6 3.1 3.4 1.3 5.7
Penryn 7.3 6.7 2.6 2.1 1.0 6.2

Table 5 percolation & dilation 3× 3 results in cpp

correlation of its peak value with the maximum number of
concavities (Fig. 15).

For random images, again the most stressing cases for a
segment-based CCL, LSLSTD is faster than all pixel-based
procedures (Fig. 17):×1.6 faster thanRDT with a×3 smaller
standard deviation, and ×1.2 faster than SDT with a ×3
smaller standard deviation.

For structuring elements 3×3 and 5×5, erosion is close
to opening and dilation is close to closing. It appears from
their sketch that erosion and dilation are well symetric, then
we can restrict the study to dilation. For 3 × 3 dilation im-
ages, LSLSTD is ×2.0 faster than RDT and its standard de-
viation drops down to 1.0 that is ×2.6 smaller than RDT .
LSLRLE is in average ×2.4 faster than RDT .



16

0 50 100 150 200 250 300
4

6

8

10

12

14

16

k

cp
p

Rosenfeld-UF

Rosenfeld-PC Rosenfeld-DT

Selkow-DT

LSL-STD

LSL-RLE

Fig. 18 average cpp for homothety, k ∈ {4, 8, 16, 32, 64, 128, 256}

arch RUF RPC RDT SDT LSTD LRLE

Homothety without Features computation
G4 31.7 33.8 29.5 31.2 34.4 22.0
G5 18.0 18.5 16.5 17.1 16.2 13.0

Conroe 18.8 20.5 13.0 13.5 13.7 7.5
Penryn 13.1 12.1 12.0 9.2 9.0 5.3
standard deviation for Homothety without Features computation

G4 3.6 3.7 1.5 1.5 0.70 1.3
G5 1.4 1.5 0.54 0.52 0.47 1.4

Conroe 1.1 1.0 0.50 0.49 0.48 1.1
Penryn 1.4 1.1 0.82 0.57 0.38 0.83
Homothety with Features computation

G4 76.4 78.5 74.2 75.9 16.2 16.1
G5 38.1 38.6 36.6 37.2 9.4 8.8

Conroe 30.9 32.6 25.1 25.6 7.2 5.1
Penryn 21.7 21.6 21.5 19.0 6.0 4.5
OCR with Features computation

G4 71.3 73.9 68.3 69.7 16.1 17.1
G5 35.7 36.4 32.4 32.3 17.4 14.3

Conroe 28.2 29.7 22.8 22.8 7.3 6.2
Penryn 22.1 22.0 19.8 18.4 6.1 5.1
cadastre with Features computation

G4 116 117.9 106 108 14.9 17.1
G5 50.8 51.3 42.3 42.2 17.2 15.2

Conroe 60.9 63.0 49.4 50.8 7.6 7.9
Penryn 41.5 42.2 42.8 36.2 6.6 6.8

Table 6 homothety, OCR and cadastre results in cpp

In the peculiar case of homothety, it was necessary for
sake of results readability and conciseness to check the sta-
bility of execution time vs. square (k) sizes (Fig. 18).

In varying them as above-mentioned and storing the cpp
in the k × λ matrix of results (λ: scale factor ' image size)
it appears that the variance of the elements respectively for
a given k or a given image size is low (Tab. 6). constant over
result subsets and more interestingly independent of the pro-
cedure. This constancy allows to display only mean and de-
viation values global to the whole set of tested images. For
homothety, all versions show a decreasing cpp but the ra-

tio remains the same when there is no feature computation:
LSLRLE is×2.3 faster thanRDT . When there are some fea-
ture computation, RDT becomes ×1.8 slower, while, thanks
to RLE compression, LSLRLE performance increases to be-
come ×4.7 faster than RDT .

The table 6 figuring the respective execution times of
Rosenfeld and LSL procedures show that the variances in
both cases range respectively from 0.82 to 1.4 and from 0.38
to 0.83. Being comparable, these values indicate that the im-
pact of the cache is not major, whether data stay in the cache
or not the cache predictor succeeds in maintaining the flow.
Additionally, would the cache have an influence, the curves
(cpp vs. k, vs. λ) would present a discontinuity which is not
the case (Fig. 18). Thus the main difference in the mean ex-
ecution times cannot be else than in the amount of unnec-
essary accesses to the equivalence table and operations to
manage pixel/segment adjacency.

For OCR, LSLSTD and LSLRLE are respectively ×3.3
and ×3.9 faster than RDT . One can notice too that with
feature computation, OCR results are close to dilation re-
sults. For very complex images like cadastre, with a huge
number of labels and concavities compared to OCR, RDT
is much more data sensitive than LSL: RDT performance
drops down by a factor ×2.2 while LSLSTD and LSLRLE
respectively drop down by a factor ×1.1 and ×1.3. Thus
both LSL versions outperform RDT by a factor greater than
×6.

As a matter of fact, the LSL execution times for this
512×512 images benchmark on a 2.8 GHz Penryn are 1.6 ms
for random images, 0.47 ms for OCR and 0.61 for cadastre.

To conclude on the test result analysis, LSL is always
faster and more data independent than pixel-base procedure
even in the worst case of random images. For unstructured
random images LSLSTD should be chosen while LSLRLE
should run on all other images. More important, if random
images can be considered to be close to the worst case and
homothety images close to the best one then OCR/cadastre
images should represent the real average case. Under this
assumption, LSL execution time is by far closer to the best
case than to the worst. For real and complex images, when
a component labeling algorithm is considered as a part of a
processing chain, that is associated with some feature com-
putation, the speed ratio reaches a level of ×4, proving the
importance and the impact of software (cache and pipeline)
and algorithmic (line relative labeling and RLE compres-
sion) optimizations.

Finally, the counter-performance ofRDT strengthens the
evaluation strategy adopted in this paper (Sec. 4.1 and 3.5):
dependable measures with small standard deviation prevail
on a complexity model that can not seize the execution time
with accuracy.

5 Conclusion and future work

Two algorithms were introduced in this paper. The first one
is an evolution of the classical pixel-based Rosenfeld’s algo-



17

rithms where the equivalence construction, commonly based
on the Union-Find algorithm, is replaced by a Selkow’s al-
gorithm. This algorithm already exists in the French image
processing community. When modified with Decision Tree
optimization, it is faster and more runtime predictable than
the 2007 Wu’s world fastest algorithm (28).

The second algorithm called Light Speed Labeling deals
with segments. We focus on RISC architecture specificities
to design it. To be efficient a CCL algorithm should optimize
pipeline executions by reducing the number of stalls, and
should limit the memory footprints and cache misses. We in-
troduce a new line-relative labeling that makes the segment
adjacency detection more efficient. Combined with Selkow’s
algorithm, this algorithm has much less conditional state-
ments, whence reducing the number of pipeline stalls. As
memory management of tables is also a weak point of segment-
based algorithms, the implementation of user data structures
was also optimized. Sixteen versions of LSL have been de-
signed. Two versions were presented: the first one is the most
systematic and data-independent possible and is designed
for noisy images (random or pseudo random images with
very few structuration) and for systems where predictability
is important. The second one is optimized for real images
(conditional statements, cache footprints and cache hits).

For the four sets of benchmark, all results point out that
LSL is faster (up to ×6) and more runtime predictable (up
to ×2) than pixel-based algorithms. As all segment-based
algorithms, LSL is optimal with the number of created la-
bels. The implemented memory optimizations make it well
suited for embedded and parallel systems where speed and
predictability vs. memory are crucial. That point will consti-
tute the next step of our research in the area.

More generally, these results are also interesting as they
provide some hints and a new methodology to design data-
dependent algorithms that should be implemented on RISC
architectures.

Future work will consider parallel versions of LSL and
its application to derivate algorithms like hysteresis thresh-
olding, convex hull computation, geodesic reconstruction,
black & white labeling with holes filling (3), and more spe-
cialized algorithms like level sets (17) and level lines label-
ing (5) (9).

References

1. P. Adam, B. Burg, B. Zavidovique, Dynamic programming for re-
gion based pattern recognition, ICASSP, pp 2075-2078, 1986

2. H. M. Alnuweiri, V.K. Prasanna, Parallel architecture and algo-
rithms for image component labeling, IEEE Transaction on Pat-
tern Analysis and Machine Intelligence, vol 14,10, October 1992.

3. J. Bajon, M. Cattoen, S. D. Kim, A concavity characterization
method for digital objects. Signal Processing, 9,3 pp 151-161.
1985.

4. G.E. Blelloch, Vector Models for Data-Parallel Computing. The
MIT Press, Cambridge Massachusetts, 1990.

5. F. Guichard, S. Bouchafa, D. Aubert. A change detector based on
level sets. International Symposium on Mathematical Morphology
ISMM 2000, Palo Alto, pp 321-330, june 2000.

6. F. Chang, C. Chen, A linear-time component-labeling algorithm
using contour tracing technique, Computer Vision and Image Un-
derstanding, vol 93, pp 206-220, 2004.

7. J.M. Chassery, A. Montanvert, Géometrie discrète en analyse
d’image, Traité des Nouvelles technologies, Hermes. ISBN 2-
86601-271-2. pp 200-214, 1991.

8. T.H. Cormen, C.E. Leiseirson, R.L. Rivest, C. Stein, Introduction
to Algorithms, Charpter #21, pp 498-522, MIT Press, ISBN 0-
262-03293-7, 2001.

9. M. Gouiffès, B. Zavidovique, A Color Topographic Map Based on
the Dichromatic Reflectance Model, EURASIP Journal on Image
and Video Processing Volume 2008, Article ID 824195, 14 pages,
doi:10.1155/2008/824195.

10. R.M. Haralick, L.G. Shapiro, Computer and Robot Vision, volume
1, Addison-Wesley ISBN 0-201-56943-4, pp 31-48, 1992.

11. L. He, Y. Chao, K. Suzuki, A run-based two-scan labeling algo-
rithm, ICIAR 2007, LNCS 4633, pp 131-142, 2007.

12. L. Lacassagne, M. Milgram, P. Garda. Motion detection, labeling,
data association and tracking in real-time on RISC computer, pp
520-525, ICIAP 1999.

13. L. Lacassagne. Détection de mouvement et suivi d’objets en temps
réel, Paris6 University thesis, France, June 2000.

14. Images data base used for benchmarking: http://www.ief.
u-psud.fr/˜lacas/Download/LSL/LSL.html

15. P. Lamaty, D. Demigny, Opérateur matériel d’étiquetage de
régions temps reel et flot de données, GRETSI 1999, http:
//hdl.handle.net/2042/13059.

16. R. Lumia, L. Shapiro, O. Zungia. A new connected compo-
nents algorithms for virtual memory computers. Computer Vision,
Graphics and Image Processing (22)2, pp 287-300. 1983.

17. N. Paragios, R. Deriche. Geodesic active regions and level set
methods for motion estimation and tracking. Computer Vision and
Image Understanding , Volume 97 Issue 3, pp 259-282, 2005.

18. L. Perroton, Segmentation parallèle d’image volumique, ENS
Lyon, LIP thesis, France, 1994.

19. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Nu-
merical Recipes in C, The art of scientific computing. second edi-
tion, Chapter 1, pp 20-23. Cambridge Press.

20. N. Otsu, A threshold selection method from gray-level histograms.
IEEE Transactions on System Man and Cybernetics, 9, pp 62-66.

21. C. Ronse, P.A. Dejvijver. Connected components in binary im-
ages: the detection problems. Research Studies Press. 1984.

22. A. Rosenfeld, J.L. Platz. Sequential operator in digital pictures
processing, Journal of ACM, vol 13,4, pp 471-494, 1966.

23. S.M. Selkow. One pass complexity analysis of digital pictures
properties, Journal of ACM, vol 19,2, pp 283-295, 1972.

24. Y. Shima, T. Murakami, M. Koga, H. Yashiro, H. Fujisawa, A high
speed algorithm for propagation-type labeling based on block sort-
ing of runs in binary images. ICPR 1990 pp 655-658.

25. P. Soille, Morphological Image Analysis Principles and applica-
tions, p. 38, second edition Springer ISBN 3-540-42988-3, 1999.

26. L. Di Stefano, A simple and efficient connected component label-
ing algorithm, ICIAP 1999, pp 322-327.

27. K. Suzuki, I. Horiba, N. Sugie, Linear-time connected component
labeling based on sequential local operations. Computer Vision
and Image Understanding”, 89,1 pp 1-23, 2003.

28. K. Wu, E. Otoo, A. Shoshani, Optimizing Connected component
labeling algorithms, Pattern Analysis and Applications v11 DOI
10.1007/s10044-008-0109-y, 2008.

29. Y. Yang, D. Zhang, A novel line scan clustering algorithm for
identifying connected components in digital images. Image and
Vision Computing, DOI: 10.1016/S0662-8856(03)00015-5, 2003.

30. B. Zavidovique, J. Sérot, G. Quénot, Massively parallel dataflow
computer dedicated to real time image processing, ICAE 1997, pp
9-29.


